

Antecedentes del grupo de investigación: Análisis Experimental de Estructuras

- Avances en la determinación de estados de carga en elementos de hormigón.
- END aplicados a la caracterización de losas y pavimentos de hormigón.
- **END** aplicados a la caracterización de cemento Portland nacional.
- Caso de estudio: detección y diagnóstico de Alcalí-Agregado en Uruguay.

Análisis estructural y patología de estructuras

Visualización en 3D

Caracterización de materiales

Visualización en 3D

Análisis dinámico de estructuras

4ª JORNADA DE AVANCES EN DISEÑO Y TECNOLOGÍA DEL HORMIGÓN

Ensayos no destructivos aplicados al diagnóstico estructural

4ª JORNADA DE AVANCES EN DISEÑO Y TECNOLOGÍA DEL HORMIGÓN

Diagnóstico de estructuras patrimoniales

Intro Compresión en hormigón

Visualización en 3D

VANCES EN DISEÑO Y TECNOLOGÍA DEL HORMIGÓ

Determinación del estado tensional en elementos de hormigón comprimidos

Cementos END

4ª JORNADA DE AVANCES EN DISEÑO Y TECNOLOGÍA DEL HORMIGÓN

Motivación

- Determinación de diferencias significativas en el estado de carga de columnas o pilares

- Deficiencias en la tensión de **compresión** aplicada a elementos estructurales pre y postensado

- Falta de métodos experimentales para la determinación del estado de carga estructuras de hormigón

Existen antecedentes en hormigón pretensado donde se detectó de forma experimental que la teoría lineal no explica el comportamiento de elementos comprimidos de hormigón.

Materiales y Métodos

Resultados

Resultados

Resultados: modelo numerico (FEM)

IANCES EN DISEÑO Y TECNOLOGÍA DEL

Resultados: modelo numerico no lineal y experimentales

Intro

Comentarios:

Los resultados experimentales muestran que la **frecuencia fundamental de** vibración torsional de elementos de hormigón aumenta al aumentar el nivel de compresión del elemento.

En promedio el incremento es de entre 0.6 y 2.7% con respecto a la frecuencia en estado descargado, para niveles de compresión que van desde 1 a 5 MPa respectivamente.

Los cambios en frecuencia corresponden a incrementos en promedio de 9.5 Hz por cada incremento del orden de 1 MPa en la tensión de compresión del elemento.

Visualización en 3 dimensiones del interior de losas de hormigón

Intro Compresión en hormigón

Visualización en 3D

Materiales y Métodos

GPR

UNIVERSIDAD DE LA REPÚBLIC

Hormigón

Visualización en 3D

DA DE AVANCES EN DISEÑO Y TECNOLOGÍA DEL HORMIGÓN

Cementos END

Y X Х

Acero

GPR

GPR

Intro Compresión en hormigón

Visualización en 3D

Cementos END

ND Reacción Alcali-Agregado

Ultrasonido: Pulso-Eco

Interfase	Z 1	Z ₂	$R = \frac{z_2 - z_1}{z_2 + z_1}$
Hormigón-Acero	9.6	46.5	66%
Hormigón-Aire	9.6	.000429	99%

Visualización en 3D

Ultrasonido: Pulso-Eco

Resultados

Comentarios:

- El GPR es muy sensible para la detección de armaduras y vainas metálicas

- Con el Ultrasonido **Pulso-Eco** se puede determinar **espesores** y detectar la prescencia de **huecos**

- Fusión de datos mejora la visualización del interior del hormigón

Caracterización de Cemento Portland Mediante Ensayos en probetas de Mortero **Objetivo:** verificar la calidad del **cemento Portland** y comparar los resultados de ensayos destructivos con los resultados de ensayos no destructivos.

Materiales: Cemento Normal (CPN), Cemento Fillerizado (CNF) y Cemento de Bajo Calor de Hidratación (CBCH).

Ensayos Destructivos: Compresión a 2, 7 y 28 días.

Ensayos no Destructivos: Ultrasonido y Resonancia Mecánica.

4ª JORNADA DE AVANCES EN DISEÑO Y TECNOLOGÍA DEL HORMIGÓN

Ensayos no destructivos aplicados a morteros Ultrasonido:

$$V_P \cong \sqrt{\frac{E}{\rho}} \rightarrow \qquad E \cong V_P^2 \rho$$

Módulo de Elasticidad \rightarrow Resistencia a compresión

Visualización en 3D

Ensayos no destructivos aplicados a morteros

Probetas CNF: Módulo de Elasticidad Dinámico vs. Resistencia a Compresión

Modulo de Elasticidad Dinamico (Gr

Probetas CBCH: Módulo de Elasticidad Dinámico vs. Resistencia a Compresión

Visualización en 3D

Probetas CBCH: VPU vs. Resistencia a Compresión

Evolución de la resistencia para CPN

Crecimiento de resistencia de dos muestras

Comentarios:

- Buena correlación entre los **END** y la **resistencia a compresión** en probetas de mortero ensayadas en condiciones de laboratorio
- Los resultados obtenidos con **ultrasonido** muestran mayores índices de correlación lineal con la resistencia
- La propia variabilidad del cemento ensayado hace que sea difícil obtener una buena estimación de la resistencia a compresión con valores obtenidos a edades tempranas

Caso de Estudio: Detección y Diagnóstico de Reacción Alcali Agregado en Uruguay

Intro Compresión en hormigón

Visualización en 3D

Cementos END

ND Reacción Alcali-Agregado

Estudio de Antecedentes, etc.

Inspección Visual

4ª JORNADA DE AVANCES EN DISEÑO Y TECNOLOGÍA DEL HORMIGÓN

Cementos END

Reacción Alcali Agregado

Extraccion de testigos y

Ensayos No Destructivos

Las tinciones se producen en presencia de la reacción, pero también se pueden producir por otras causas.

Las tinciones selectivas se deben tomar como un indicador.

Solución de sodio cobalto nitrito

Solución de Rodamina B

Visualización en 3D

Acumulación de producto blancuzco

- Formación cuarteada con deposiciones (100 μm)
- Formaciones tipo "agujas" o "hilos" (10 μm) (RILEM, 2013).

- Espectro EDS
 - Presencia de Potasio y Calcio (menor contenido de Calcio)

Zona superior a depósito blancuzco

– Formaciones tipo "placas" (10 μm)

Espectro EDS

- Presencia de Potasio y Calcio (mayor contenido de Calcio)

La morfología observada, junto al espectro, confirman la presencia de la RAA (RILEM, 2013).

Zona de depósito blancuzco.

• Formaciones tipo "agujas" (10 μm)

4ª JORNADA DE AVANCES EN DISEÑO Y TECNOLOGÍA DEL HORMIGÓN

Espectro EDS Presencia de azufre (S), Calcio (Ca) y Aluminio (AI).

Consistente con deposiciones de Etringita (sulfoaluminato)

Comentarios:

Las tinciones dieron indicios de la RAA.

El análisis microestructural mediante **MEB/EDS** permitió identificar productos de la **Reacción Alcali Agregado**.

Se confirmó que la **RAA** es una de las **causas de la fisuración**. Sin embargo, la presencia de **etringita** puede dar pie a algún tipo de DEF.

Muchas Gracias por su Atención!

gonzaloc@fing.edu.uy

